Section 13 - Topic 3

The Radian Measure - Part 1

When measuring angles in radians, one rotation around the circle $\left(360^{\circ}\right)$ is equivalent to \qquad radians.

What is the radian measure at 180° ? Label it on the circle.

What is the radian measure at 90° ? Label it on the circle.

What is the radian measure at 270° ? Label it on the circle.

How can we convert degrees to radians?

Let's Practice!

1. Convert 150° into radians.
2. Convert $-\frac{3 \pi}{4}$ into degrees.

Try It!

3. Convert -225° into radians.
4. Convert $\frac{7 \pi}{6}$ into degrees.

Complete the unit circle by providing the missing angle measures (both degrees and radians).

Consider the unit circle diagram below.

Evaluate $\sin \frac{\pi}{6}$.

Evaluate $\cos \frac{\pi}{6}$.

Determine the coordinates of A.

Section 13 - Topic 4

The Radian Measure - Part 2

A reference angle is an \qquad angle formed by the terminal side of a given angle and the .

Reference triangles can be used to evaluate the trigonometric values of an angle whose terminal side is not in Quadrant
\qquad -.

Consider the diagrams below. Draw the reference triangles that we could use to find the trigonometric functions for $\angle \theta$.

Let's Practice!

1. Consider the unit circle diagram below.

a. Evaluate $\sin \frac{2 \pi}{3}$.
b. Evaluate $\cos \frac{2 \pi}{3}$.
c. Find the coordinates of B.
2. Consider the unit circle diagram below.

a. Evaluate $\sin \frac{7 \pi}{6}$.
b. Evaluate $\cos \frac{7 \pi}{6}$.

BEAT THE TEST!

1. In $\triangle A B C, m \angle B A C=60^{\circ}$ and $A C=1$ unit.

Draw triangles in Circle A to show how $\triangle A B C$ can be placed in the circle to illustrate $\sin (\theta)$, where $\theta= \pm \frac{\pi}{3} \pm n \pi$ for $n=0$ and $n=1$.

